Exponential-time quantum algorithms for graph coloring problems

Kazuya Shimizu and Ryuhei Mori

Tokyo Institute of Technology

Jan. 6, 2021

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

Graph coloring problem

Graph coloring problem:

Input: An undirected graph G

Output: The chromatic number $\chi(G)$ of G

Graph coloring algorithms

- Graph coloring problem is NP-hard.
- Quantum algorithm requires exponential time.
- The fastest classical algorithm requires O^{*}(2ⁿ) time where n is the number of vertices [Björklund and Husfeldt 2006], [Koivisto 2006]

Theorem (Main theorem)

There is a quantum algorithm using QRAM solving the graph coloring problem with running time $O(1.914^n)$.

First algorithm for graph coloring problem with running time $O((2 - \epsilon)^n)$.

Main idea

Grover's search for dynamic programming.

[Ambainis, Balodis, Iraids, Kokainis, Prūsis and Vihrovs 2019]

Previous work

- Grover's algorithm gives quadratic speedup for exaustive search [Grover 1996]
- The exausitive search for traveling salesman problem (TSP) needs $O^*((n-1)!)$ time
- There is a classical algorithm based on dynamic programming with running time $O^*(2^n)$ [Bellman 1962], [Held and Karp 1962]
- Grover's algorithm can be applied to some algorithms based on dynamic programming [Ambainis et al. 2019]
- There is a quantum algorithm for TSP with running time $O(1.728^n)$ [Ambainis et al. 2019]

Dynamic programming for TSP

For $S \subseteq V$ and $v \in S$,

A(S, v) := length of the shortest path from 1 to v visiting all vertices in S.

Recursive formula for A(S, v):

$$A(\{1\}, 1) = 0$$
$$A(S, v) = \min_{u \in S \setminus \{v\}} \{A(S \setminus \{v\}, u) + \operatorname{dist}(u, v)\}$$
$$\mathsf{OPT}(G) = \min_{v \in V} \{A(V, v) + \operatorname{dist}(v, 1)\}$$

DP needs $O(n^2 2^n)$ operations [Bellman 1962], [Held and Karp 1962]

QRAM

RAM (random access memory):

 $i \mapsto m(i)$

QRAM (quantum random access memory):

 $|i\rangle |0\rangle \longmapsto |i\rangle |m(i)\rangle$

$$\sum_{i} c_{i} \ket{i} \ket{0} \longmapsto \sum_{i} c_{i} \ket{i} \ket{m(i)}$$

Grover search for DP

For $S \subseteq V$ and $u, v \in S$,

B(S, u, v) := length of the shortest path from u to v visiting all vertices in S.

$$OPT(G) = \min_{S \subseteq V, |S| = \lceil n/2 \rceil, v \in S} \{B(S, 1, v) + B((V \setminus S) \cup \{1, v\}, v, 1)\}$$

For S of size $n/2$,

 $B(S, u, v) = \min_{T \subseteq S \setminus \{v\}, |T| = \lceil n/4 \rceil, w \in T} \{B(T, u, w) + B((S \setminus T) \cup \{w\}, w, v)\}$

- For all S satisfying $|S| \le \lceil n/4 \rceil$ and $u, v \in S$, B(S, u, v) is computed by the classical DP and stored to QRAM.
- **2** Compute OPT(G) according to the above recurrence.

$$\binom{n}{\frac{n}{4}} + \sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}} = O(1.755^n)$$

[Ambainis et al. 2019]

DP for graph coloring

The chromatic number $\chi(G) \ge 2$ satisfies the following recurrence

$$\chi(G) = \min_{S \subseteq V, S \notin \{\varnothing, V\}} \chi(G[S]) + \chi(G[V \setminus S]).$$

IF we can assume $|S| = \lfloor n/2 \rfloor$, then the running time T(n) satisfies

$$T(n) \le 2^{n/2} T(n/2) \le 2^{n/2 + n/4 + n/8 + \cdots} \le 2^n$$

With the precomputation, we obtain quantum algorithm with running time $O((2 - \epsilon)^n)$.

This idea is completely same as [Ambainis et al. 2019].

But, this doesn't work.

Unbalanced coloring

Independent set

Independent set is a subset of vertices that are not connected to each other.

Colorable with k colors \iff Vertices can be partitioned into k independent sets

Balanced partition

Lemma

Let n_1, \ldots, n_k be positive integers for $k \ge 1$.

Assume that $n_k \ge n_i$ for all $i \in \{1, 2, ..., k - 1\}$.

Then, there is $t \in \{1, 2, ..., k-2\}$ such that $\sum_{i=1}^{t} n_i \leq n/2$ and $\sum_{i=t+1}^{k-1} n_i \leq n/2$ where $n := \sum_{i=1}^{k} n_i$.

Quantum algorithm for graph coloring

● For S ⊆ V, |S| ≤ n/4, compute the chromatic number of G[S] and store them to QRAM

- 2 Let c = n and for each maximal independent set I, partition $V \setminus I$ into S and T such that |S|, $|T| \le n/2$, do following
 - A Compute the chromatic numbers $\chi(G[S])$ and $\chi(G[T])$, recursively (Step 1 is skipped in the recursion)

 $\mathsf{B} \ c = \min\{c, \chi(G[S]) + \chi(G[T])\}$

3 Output c + 1

Quantum algorithm for graph coloring

1: function
$$CHR(G)$$

2: if *G* is two colorable then return the chromatic number of *G*
3: $\chi[\varnothing] \leftarrow 0$
4: for $S \subseteq V$, $S \neq \emptyset$, $|S| \leq \lfloor n/4 \rfloor$ do (any order consistent with the inclusion relation)
5: $\chi[S] \leftarrow 1 + \min_{I \in MIS(G[S])} \{\chi[S \setminus I]\}$ [Lawler 1976]
6: $c \leftarrow n$
7: for $t \in \{1, ..., n\}$, $s \in \{\max\{\lceil n/2 \rceil - t, 1\}, ..., \lfloor (n - t)/2 \rfloor\}$ do
8: $a \leftarrow \min_{I \in MIS(G), |I| = t} \min_{T \subseteq V \setminus I, |T| = s} (C(T) + C(V \setminus I \setminus T))$
9: $c \leftarrow \min\{c, a\}$
10: return $c + 1$
11: function $C(S)$
12: if $G[S]$ is two colorable then return the chromatic number of $G[S]$
13: $c \leftarrow |S|$

14: for
$$t \in \{1, \ldots, |S|\}$$
, $s \in \{\max\{\lceil |S|/2 \rceil - t, 1\}, \ldots, \lfloor (|S| - t)/2 \rfloor\}$ do
15: $a \leftarrow \min_{I \in MIS(G[S]), |I|=t} \min_{T \subseteq S \setminus I, |T|=s} (\chi[T] + \chi[S \setminus I \setminus T])$

16:
$$c \leftarrow \min\{c, a\}$$

17: return *c* + 1

Main result

Theorem (Main theorem)

The running time of the quantum algorithm using *QRAM* for the graph coloring problem has running time

$$O^*\left(\left(2^{37/35}3^{3/7}5^{-9/70}7^{-5/28}\right)^n\right)=O(1.914^n).$$

In fact, there is a faster quantum algorithm although we haven't analyzed yet.

It's first algorithm for graph coloring problem with running time $O((2-\epsilon)^n)$.

Graph k-coloring problem

Graph *k*-coloring problem:

Input: An undirected graph G

Output: YES if G is k-colorable, and NO otherwise

Previous work

A list of known classical algorithms.

- Graph 3-coloring problem: O(1.3289") [Beigel and Eppstein 2005]
- Graph 4-coloring problem: O(1.7504ⁿ) [Byskov 2004] O(1.7272ⁿ) [Fomin, Gaspers, Saurabh 2007]
- Graph 5-coloring problem: No classical algorithm with running time $O((2 - \epsilon)^n)$ has been known

Our result

Theorem (This work)

There are quantum algorithms not using QRAM for the k-coloring problem with running time $O(\alpha(k)^n)$ where $\alpha(k)$ is shown below, and is less than 2 for $k \leq 20$.

k	$\alpha(k)$	k	$\alpha(k)$	k	$\alpha(k)$
3	1.1528	9	1.7460	15	1.9303
4	1.3231	10	1.7775	16	1.9303
5	1.4695	11	1.7775	17	1.9303
6	1.5261	12	1.8246	18	1.9366
7	1.6511	13	1.8499	19	1.9575
8	1.6585	14	1.8580	20	1.9575

Main Idea:

k-coloring problem can be reduced to k'-coloring problem for k' < k [Byskov 2004].

Summary

- Graph coloring problem can be solved by quantum algorithm using QRAM with running time $O(1.914^n)$
- Graph k-coloring problem can be solved by quantum algorithms not using QRAM with running time O((2 − ε)ⁿ) for k ≤ 20.