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LDPC codes over the binary erasure chann“

The aim of our research

To estimate the bit error probability P,(n, €, t) of LDPC codes

over the BEC under belief propagation decoding

where

m n: blocklength
m € erasure probability of BEC

m t: the number of iterations
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Previous Results

N

Analysis for the BEC

Aymptotic | Blocklength | LTRSS | Complentty | Encembles Method
Exact o0 t O(t) O Density Evolution [1]
Exact n o0 O(n3) VAN Stopping Sets [2]
Asymptotic n o0 O(].) O Scaling Law [3]
Asymptotic n t O(l’3) X— O This Research

1] Richardson and Urbanke 2001
2] Di et al. 2002
3] Amraoui et al. 2004

The Main Result of This Work

| Our result presented in ISIT2008 is generalized for irregular ensembles

3/15



Asymptotic Expansion

Asymptotic Expansion w.r.t n while t is fixed

Pp(n, €, t) = Pp(o0, €, t) + e, t)% + O (%)
Coefficient of 1/n
e, t):= lim n(Py(n, € t) — Pp(oo, €, t))

n—oo

Approximation

Puo(n, €, t) = Py(oo, €, t) + (e, t)%

Our purpose is to derive (€, t) for irregular ensembles
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Neighborhoods

N

Po(n e, t)= Y  P,(G)Py(G,e)

G € the set of all neighborhoods of depth t

Pu(G, €) g(1-(1-€P)? €(1-(1-<f) g3 e(1-(1-€p) e¥1+e(l-g)) ¢

(2n-6)(2n-8) 2(2n-6) 1 2 4(2n-6) 2
P,(G) @nD)(2n5)  @n-D@n6) (@nD@Ens)  @nh@ns)  @n-D@nb)  (@nd)
Order of P,(G) 1 nt n - n-2 n?t nt
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Number of cycles

The basic fact

If G has k cycles
P,(G) = 0(n").

The large blocklength limit of the bit error probability

Pp(oo, e, t) = lim ) P,(G)Py(G,e)

n—oo

G € the set of all neighborhoods of depth t

= lim > Pa(G)Pu(G.€)

n—oo

G € the set of all cycle-free neighborhoods of depth t
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Calculation of «fe, t)

N

a(e, t) := lim n(Py(n, €, t) — Py(oo, €, t))

n—oo

= lim n ZPn(G)Pb(G,e)—Pb(oo,e, t)

n—oo

G € the set of all cycle-free neighborhoods of depth t

\ . 4
~~

B(e t)

+ lim nY Py(G)Py(G,€)
n—oo
G € the set of all single-cycle neighborhoods of depth t

\ . 4
~~

v(€, t)

In the previous work [Mori et al., 1SIT2008],

~(€, t) was obtained for irregular ensembles
‘ but 3(e, t) was obtained only for regular ensembles
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Contribution of Cycle-Free Neighborhoods‘

Ble t) =

1
20/(1)

KK = 1P = 30 L EV(Y; = DP] = 30 L56(G — 1P

The expectations are taken on the tree ensemble of depth t

Poo(G) = lim Pn(G)

n—o00
m  K: the number of edges in a tree neighborhood

m V. the number of variable nodes of degree / in a tree neighborhood
m  (;: the number of check nodes of degree j in a tree neighborhood

m  P: the erasure probability of the root node after BP decoding

on a tree neighborhood
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Method of Generating Function

azEt[XKP]
E:/K(K—-1)P| =
AK(k - = =5
82Et[XV’P]
SV - )P =
82Et[XCJP]
Et[C/(C/ o 1)P] - aXQ =1

1
Et[XKP] = — ]Et
X

[T I+
k /

vik = x,z = x forall k, |

: V, C
Et[XV’P] = [, Hyk"HZ/ 'P
Lk / _y;:x,yk=1,2/=1fora||k;éi,/

Et[XCJP] = Et Hy/:/kHZ/C/P
L k / llzi=x,yk=1,z7=1forall k,I #j
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The Mother Generating Function

Ee [ [0 [[27P| = e£(F(2)).
k /
where
F(t) = 4 if t =0
| P(g(t)) — P(G(t)), otherwise,
G(t):=L(f(t—1)) —eL(F(t—1)),
fr) = 4 & if t =0
| P(g(t)), otherwise,
g(t) == L(f(t = 1)),
and where

£(x) := Z Liyix' L(x) = Z Ayix' L P(x) = ijzjxj_l.
] ] J



o€, t) for Optimized Irregular Ensemble ‘

15

10

o€, t)

0 01 02 03 04 05 06 07 08 09 1

A(x) = 0.500x + 0.153x% + 0.112x3 + 0.055x* + 0.180x°

p(x) = 0.492x2 + 0.508x3 R~ 0192 egp ~ 0.8, t=12 .8 50
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Simulation Results

10° ¢
10" |

100 gaee®®™

n|Pp(n, €, t) — Pp(o0, €, t)|

10

€

A(x) = 0.500x + 0.153x? 4 0.112x3 4 0.055x* + 0.180x°

. p(x) = 0.492x2 + 0.508x3 R~ 0.192, egp ~ 0.8, t = 20
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Ensembles with \», =0

10" ¢

n|Pp(n, €, t) — Pp(o0, €, t)|
S

10'3 g'\ | | | | |
015 02 025 03 035 04 045 O.

€

5 055 0.6

(3,6)-regular ensemble t=5  Py(n, €, 00) = 0(1/n?) for € < epp
For small €, the small number of iteration is sufficient
unless blocklength is sufficiently large 13/ 15




The Speed of Convergence

N

For the irregular ensemble,
A(x) = 0.500x + 0.153x% 4 0.112x> + 0.055x* + 0.180x°
p(x) = 0.492x2 4 0.508x3
when t = 20, n = 5760,
a(€, t) =~ n(Pp(n, e t) — Pp(oo, €, t))

for any € (Generally, Ay is larger and larger, the convergence is faster)

o€, t) consists of
contributions of cycle-free neighborhoods and single-cycle neighborhoods

But the number of variable nodes in the smallest tree of depth 20 is
4194302 > 5760

The probability of cycle-free and single-cycle neighborhoods is zero

I Open problem: Why is the speed of the convergence fast?
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Conclusion and Open Problems

Conclusion

m  Using the generating function method,
B(e, t) is obtained for irregular ensembles

m The speed of the convergence to a(e, t) is fast

Open problems

m The fast convergence to « (e, t) except for
ensembles with A\» = 0 and € is small

m  Minimization of Py(n, €, t) + a(e, t)/n on some conditions

m Higher order terms i.e. coefficient of 1/n%, 1/n3 ...

m  The limit parameter « (€, co) for irregular ensembles

m  Generalization to arbitrary binary memoryless symmetric channels

m  Asymptotic analysis of performance based on other limits e.g. n—oc0 and

t— 00 simultaneously
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