Finite-Length Analysis of Irregular **Expurgated LDPC Codes under** Finite Number of Iterations

Ryuhei Mori

Toshiyuki Tanaka Kenta Kasai Kohichi Sakaniwa

ISIT2009

LDPC codes over the binary erasure channel

The aim of our research

To estimate the bit error probability $P_b(n, \epsilon, t)$ of LDPC codes over the BEC under belief propagation decoding

where

- *n*: blocklength
- lacktriangle ϵ : erasure probability of BEC
- t: the number of iterations

Previous Results

Analysis for the BEC

Exact or Asymptotic	Blocklength	Number of Iterations	Computational Complexity	Irregular Ensembles	Method
Exact	∞	t	O(t)	0	Density Evolution [1]
Exact	n	∞	$O(n^3)$	\triangle	Stopping Sets [2]
Asymptotic	n	∞	O(1)	\bigcirc	Scaling Law [3]
Asymptotic	n	t	$O(t^3)$	$X \rightarrow \bigcirc$	This Research

- [1] Richardson and Urbanke 2001
- [2] Di et al. 2002
- [3] Amraoui et al. 2004

The Main Result of This Work

Our result presented in ISIT2008 is generalized for irregular ensembles

Asymptotic Expansion

Asymptotic Expansion w.r.t n while t is fixed

$$P_{b}(n, \epsilon, t) = P_{b}(\infty, \epsilon, t) + \alpha(\epsilon, t) \frac{1}{n} + O\left(\frac{1}{n^{2}}\right)$$

Coefficient of 1/n

$$\alpha(\epsilon, t) := \lim_{n \to \infty} n(P_b(n, \epsilon, t) - P_b(\infty, \epsilon, t))$$

Approximation

$$P_b(n, \epsilon, t) \approx P_b(\infty, \epsilon, t) + \alpha(\epsilon, t) \frac{1}{n}$$

Our purpose is to derive $\alpha(\epsilon, t)$ for irregular ensembles

Neighborhoods

$$P_{b}(n, \epsilon, t) = \sum_{G \in \text{the set of all neighborhoods of depth } t$$

Number of cycles

The basic fact

If G has k cycles

$$\mathbb{P}_n(G) = \Theta(n^{-k}).$$

The large blocklength limit of the bit error probability

$$\mathsf{P}_{\mathsf{b}}(\infty,\epsilon,t) = \lim_{n \to \infty} \sum_{G \in \mathsf{the} \; \mathsf{set} \; \mathsf{of} \; \mathsf{all} \; \mathsf{neighborhoods} \; \mathsf{of} \; \mathsf{depth} \; t$$

$$= \lim_{n \to \infty} \sum_{G \in \text{the set of all cycle-free neighborhoods of depth } t$$

Calculation of $\alpha(\epsilon, t)$

$$\alpha(\epsilon, t) := \lim_{n \to \infty} n(P_b(n, \epsilon, t) - P_b(\infty, \epsilon, t))$$

$$= \lim_{n \to \infty} n \left(\sum_{G \in \text{the set of all cycle-free neighborhoods of depth } t \right)$$

$$\beta(\epsilon, t)$$

$$+ \lim_{n \to \infty} n \sum_{G \in \text{the set of all single-cycle neighborhoods of depth } t$$

$$\gamma(\epsilon, t)$$

In the previous work [Mori et al., ISIT2008], $\gamma(\epsilon, t)$ was obtained for irregular ensembles but $\beta(\epsilon, t)$ was obtained only for regular ensembles

Contribution of Cycle-Free Neighborhoods

$$\beta(\epsilon, t) = \frac{1}{2L'(1)} \left(\mathbb{E}_t[K(K-1)P] - \sum_i \frac{i}{\lambda_i} \mathbb{E}_t[V_i(V_i-1)P] - \sum_j \frac{j}{\rho_j} \mathbb{E}_t[C_j(C_j-1)P] \right)$$

The expectations are taken on the tree ensemble of depth t

$$\mathbb{P}_{\infty}(G) := \lim_{n \to \infty} \mathbb{P}_n(G)$$

- K: the number of edges in a tree neighborhood
- $lackbr{\blacksquare}$ V_i : the number of variable nodes of degree i in a tree neighborhood
- $\subset C_i$: the number of check nodes of degree j in a tree neighborhood
- lackbreak P: the erasure probability of the root node after BP decoding on a tree neighborhood

Method of Generating Function

$$\mathbb{E}_{t}[K(K-1)P] = \frac{\partial^{2}\mathbb{E}_{t}[x^{K}P]}{\partial x^{2}}\Big|_{x=1}$$

$$\mathbb{E}_{t}[V_{i}(V_{i}-1)P] = \frac{\partial^{2}\mathbb{E}_{t}[x^{V_{i}}P]}{\partial x^{2}}\Big|_{x=1}$$

$$\mathbb{E}_{t}[C_{j}(C_{j}-1)P] = \frac{\partial^{2}\mathbb{E}_{t}[x^{C_{j}}P]}{\partial x^{2}}\Big|_{x=1}$$

$$\mathbb{E}_{t}[x^{K}P] = \frac{1}{x} \mathbb{E}_{t} \left[\prod_{k} y_{k}^{V_{k}} \prod_{l} z_{l}^{C_{l}} P \right] \Big|_{y_{k} = x, z_{l} = x \text{ for all } k, l}$$

$$\mathbb{E}_{t}[x^{V_{i}}P] = \mathbb{E}_{t} \left[\prod_{k} y_{k}^{V_{k}} \prod_{l} z_{l}^{C_{l}} P \right] \Big|_{y_{i} = x, y_{k} = 1, z_{l} = 1 \text{ for all } k \neq i, l}$$

$$\mathbb{E}_{t}[x^{C_{j}}P] = \mathbb{E}_{t} \left[\prod_{k} y_{k}^{V_{k}} \prod_{l} z_{l}^{C_{l}} P \right] \Big|_{z_{j} = x, y_{k} = 1, z_{l} = 1 \text{ for all } k, l \neq j}$$

The Mother Generating Function

$$\mathbb{E}_{t}\left[\prod_{k}y_{k}^{V_{k}}\prod_{l}z_{l}^{C_{l}}P\right]=\epsilon\mathfrak{L}(F(t)),$$

where

$$F(t) := \begin{cases} 1, & \text{if } t = 0 \\ \mathcal{P}(g(t)) - \mathcal{P}(G(t)), & \text{otherwise,} \end{cases}$$

$$G(t) := \mathcal{L}(f(t-1)) - \epsilon \mathcal{L}(F(t-1)),$$

$$f(t) := \begin{cases} 1, & \text{if } t = 0 \\ \mathcal{P}(g(t)), & \text{otherwise,} \end{cases}$$

$$g(t) := \mathcal{L}(f(t-1)),$$

and where

$$\mathfrak{L}(x) := \sum_{i} L_{i} y_{i} x^{i}, \qquad \mathcal{L}(x) := \sum_{i} \lambda_{i} y_{i} x^{i-1}, \qquad \mathcal{P}(x) := \sum_{j} \rho_{j} z_{j} x^{j-1}.$$

$\alpha(\epsilon, t)$ for Optimized Irregular Ensemble

$$\lambda(x) = 0.500x + 0.153x^2 + 0.112x^3 + 0.055x^4 + 0.180x^8$$

 $\rho(x) = 0.492x^2 + 0.508x^3$ $R \approx 0.192, \ \epsilon_{\rm BP} \approx 0.8, \ t = 1, 2, ..., 8, 50$

Simulation Results

$$\lambda(x) = 0.500x + 0.153x^2 + 0.112x^3 + 0.055x^4 + 0.180x^8$$

 $\rho(x) = 0.492x^2 + 0.508x^3$ $R \approx 0.192, \ \epsilon_{BP} \approx 0.8, \ t = 20$

Ensembles with $\lambda_2 = 0$

(3, 6)-regular ensemble t=5 $P_b(n, \epsilon, \infty) = \Theta(1/n^2)$ for $\epsilon < \epsilon_{BP}$ For small ϵ , the small number of iteration is sufficient unless blocklength is sufficiently large

The Speed of Convergence

For the irregular ensemble,

$$\lambda(x) = 0.500x + 0.153x^2 + 0.112x^3 + 0.055x^4 + 0.180x^8$$

 $\rho(x) = 0.492x^2 + 0.508x^3$
when $t = 20$, $n = 5760$,

$$\alpha(\epsilon, t) \approx n(P_b(n, \epsilon, t) - P_b(\infty, \epsilon, t))$$

for any ϵ (Generally, λ_2 is larger and larger, the convergence is faster)

 $lpha(\epsilon,t)$ consists of contributions of cycle-free neighborhoods and single-cycle neighborhoods

But the number of variable nodes in the smallest tree of depth 20 is $4194302 \gg 5760$

The probability of cycle-free and single-cycle neighborhoods is zero

Open problem: Why is the speed of the convergence fast?

Conclusion and Open Problems

Conclusion

- Using the generating function method, $eta(\epsilon,t)$ is obtained for irregular ensembles
- lacktriangle The speed of the convergence to $lpha(\epsilon,t)$ is fast

Open problems

- The fast convergence to $\alpha(\epsilon,t)$ except for ensembles with $\lambda_2=0$ and ϵ is small
- Minimization of $P_b(n, \epsilon, t) + \alpha(\epsilon, t)/n$ on some conditions
- Higher order terms i.e. coefficient of $1/n^2$, $1/n^3$...
- The limit parameter $\alpha(\epsilon, \infty)$ for irregular ensembles
- Generalization to arbitrary binary memoryless symmetric channels
- Asymptotic analysis of performance based on other limits e.g. $n \rightarrow \infty$ and $t \rightarrow \infty$ simultaneously