Holographic Transformation, Belief Propagation and Loop Calculus for Generalized Probabilistic Theories

Ryuhei Mori

Tokyo Institute of Technology

June 16, 2015 ISIT at Hong Kong

Holographic transformation, belief propagation and loop calculus

Holographic transformation [Valiant 2004]: Linear-algebraic techinique for deriving non-trivial equalities between sum of products.

$$\sum_{\mathbf{x} \in \{0,1\}^n} \prod_{a} f_a(\mathbf{x}_{(a)}) = \sum_{\mathbf{y} \in \{0,1\}^m} \prod_{b} g_b(\mathbf{y}_{(b)})$$

MacWilliams identity, high temperature expansion, loop calculus ...

Belief propagation [Pearl 1982]: Efficient message-passing algorithm for approximating marginal distribution and partition function.

Loop calculus [Chartkov and Chernyak 2006]: Equality relating partition function and the approximation obtained by BP.

$$\sum_{\mathbf{x}} \prod_{\mathbf{a}} f_{\mathbf{a}}(\mathbf{x}_{(\mathbf{a})}) = \mathbf{Z}_{\mathsf{BP}} \left(1 + \sum_{\mathsf{loop \ structure} \ L} \mathcal{K}(L) \right).$$

Factor graph and partition function

$$Z(G) := \sum_{(x_1, \dots, x_7) \in \mathcal{X}^7} f_1(x_1, x_3, x_6)$$

$$\cdot f_2(x_2, x_5, x_6) f_3(x_1, x_4, x_7)$$

$$\cdot f_4(x_2, x_3, x_5) f_5(x_4, x_5, x_7)$$
partition function

Bipartite normal factor graph

Inner product representation

representation
$$v_3 \longrightarrow v_2 \longrightarrow w_1$$

$$\sum_{(x_1,x_2,x_3)\in\{0,1\}^3} f_1(x_1)f_2(x_2)f_3(x_3)g(x_1,x_2,x_3)$$

$$= \text{sum of all elements of} \begin{bmatrix} f_1(0)f_2(0)f_3(0)g(0,0,0) \\ f_1(0)f_2(0)f_3(1)g(0,0,1) \\ \vdots \\ f_1(1)f_2(1)f_3(1)g(1,1,1) \end{bmatrix}$$

$$\begin{bmatrix} \vdots \\ f_1(1)f_2(1)f_3(1)g(1,1,1) \end{bmatrix}$$

$$[f_2(0)f_3(0)] \qquad [g(0,0,0)]$$

$$= \text{inner product of} \begin{bmatrix} f_1(0)f_2(0)f_3(0) \\ \vdots \\ f_1(1)f_2(1)f_3(1) \end{bmatrix} \text{ and } \begin{bmatrix} g(0,0,0) \\ \vdots \\ g(1,1,1) \end{bmatrix}$$

$$= \text{inner product of } \begin{bmatrix} f_1(0) \\ f_1(1) \end{bmatrix} \otimes \begin{bmatrix} f_2(0) \\ f_2(1) \end{bmatrix} \otimes \begin{bmatrix} f_3(0) \\ f_3(1) \end{bmatrix} \text{ and } \begin{bmatrix} g(0,0,0) \\ \vdots \\ g(1,1,1) \end{bmatrix}$$

Inner product representation

$$F_{v} := \sum_{\textbf{x}_{\partial v} \in \prod_{w \in \partial v} \mathcal{X}_{v,w}} f_{v}(\textbf{x}_{\partial v}) \bigotimes_{w \in \partial v} e^{v,w}_{\textbf{x}_{v,w}}.$$

The vector $G_w \in \mathcal{V}_{\partial w}$ is also defined in the same way. It holds

$$\bigotimes_{v \in V} F_v = \sum_{\mathbf{x} \in \mathcal{X}} \prod_{v \in V} f_v(\mathbf{x}_{\partial v}) \bigotimes_{(v,w) \in E} e_{\mathbf{x}_{v,w}}^{v,w}$$

$$\bigotimes_{w \in W} G_w = \sum_{\mathbf{x} \in \mathcal{X}} \prod_{w \in W} g_w(\mathbf{x}_{\partial w}) \bigotimes_{(v,w) \in E} e_{\mathbf{x}_{v,w}}^{v,w}.$$

$$\left\langle \bigotimes_{v \in V} F_v, \bigotimes_{w \in W} G_w \right\rangle = \sum_{\mathbf{x}} \prod_{v \in V} f_v(\mathbf{x}_{\partial v}) \prod_{w \in W} g_w(\mathbf{x}_{\partial w})$$

A partition function is an inner product.

Adjoint map

A: Linear map $\mathcal{V} \to \mathcal{V}'$.

 A^* : Adjoint map $\mathcal{V}' \to \mathcal{V}$ of linear map $A \stackrel{\mathsf{def}}{\Longleftrightarrow}$

$$\langle A(x), y \rangle = \langle x, A^*(y) \rangle, \quad \forall x \in \mathcal{V}, y \in \mathcal{V}'$$

Adjoint map \iff transpose of the matrix

Holographic transformation

Theorem (Holant theorem for the bipartite model)

Let $\Phi_{v,w}$ be an invertible linear map on $\mathcal{V}_{v,w}$ and $\hat{\Phi}_{v,w}$ be the inverse map of $\Phi_{v,w}$ for $(v,w) \in E$. Then, it holds

$$\left\langle \bigotimes_{v \in V} f_v, \bigotimes_{w \in W} g_w \right\rangle_{\mathcal{V}} = \left\langle \bigotimes_{v \in V} \hat{f}_v, \bigotimes_{w \in W} \hat{g}_w \right\rangle_{\mathcal{V}}$$

where

$$\hat{f}_{v} = \left(\bigotimes_{w \in \partial v} \hat{\Phi}_{v,w}\right) (f_{v}), \qquad \hat{g}_{w} = \left(\bigotimes_{v \in \partial w} \Phi_{v,w}^{*}\right) (g_{w}).$$
 Proof.

$$\left\langle \bigotimes_{v \in V} f_{v}, \bigotimes_{w \in W} g_{w} \right\rangle_{\mathcal{V}} = \left\langle \left(\bigotimes_{(v,w) \in E} \Phi_{v,w} \circ \hat{\Phi}_{v,w} \right) \left(\bigotimes_{v \in V} f_{v} \right), \bigotimes_{w \in W} g_{w} \right\rangle_{\mathcal{V}}$$

$$= \left\langle \left(\bigotimes_{(v,w) \in E} \hat{\Phi}_{v,w} \right) \left(\bigotimes_{v \in V} f_{v} \right), \left(\bigotimes_{(v,w) \in E} \Phi_{v,w}^{*} \right) \left(\bigotimes_{w \in W} g_{w} \right) \right\rangle_{\mathcal{V}} = \left\langle \bigotimes_{v \in V} \hat{f}_{v}, \bigotimes_{w \in W} \hat{g}_{w} \right\rangle_{\mathcal{V}}.$$

Quantum bipartite model

When in the inner product model,

- ▶ The linear spaces: The set of $k \times k$ Hermitian matrices.
- ▶ The inner product: The Hilbert-Schmidt inner product, i.e., $\langle A, B \rangle := \text{Tr}(AB)$.

$$\left\langle \bigotimes_{v \in V} \omega_v, \bigotimes_{w \in W} P_w \right\rangle_{\mathcal{V}} = \operatorname{Tr} \left(\bigotimes_{v \in V} \omega_v \bigotimes_{w \in W} P_w \right).$$

Probability of getting $\bigotimes_{w \in W} P_w$ on the state $\bigotimes_{v \in V} \omega_v$.

Equivalence between Schrödinger picture and Heisenberg picture is special case of the Holographic transformation

$$\left\langle \bigotimes_{v \in V} \left(\bigotimes_{w \in \partial_{V}} T_{v,w} \right) (\omega_{v}), \bigotimes_{w \in W} P_{w} \right\rangle_{\mathcal{V}}$$

$$= \left\langle \bigotimes_{v \in V} \omega_{v}, \bigotimes_{w \in W} \left(\bigotimes_{v \in \partial_{W}} T_{v,w}^{*} \right) (P_{w}) \right\rangle_{\mathcal{V}}$$

Generalized probabilistic theories

C: convex cone.

$$u \in \text{interior of } C^* := \{x \in V \mid \langle x, y \rangle \geq 0, \forall y \in C\}.$$

Set of states =
$$\{\omega \in V \mid \omega \in C, \langle \omega, u \rangle = 1\}$$
.

Set of effects =
$$\{e \in V \mid e \in C^*, u - e \in C^*\}$$
.

Set of measurements =
$$\{(e_1, ..., e_k) \mid e_1 + \cdots + e_k = u, k = 1, 2, 3, ...\}$$

Probability of outcome *i* is equal to $\langle \omega, e_i \rangle$.

- ► Classical theory: *C* is the set of non-negative vectors.
- Quantum theory: C is the set of PSD matrices.

Classical and quantum theory

Toy model: gbit

$$\omega_0 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$
, $\omega_2 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$,

,
$$\omega_1=egin{bmatrix}0&1&1\end{bmatrix}$$
 , $\omega_3=egin{bmatrix}0&-1&1\end{bmatrix}$.

$$e_0 = rac{1}{2} egin{bmatrix} 1 & 1 & 1 \end{bmatrix},$$
 $e_2 = rac{1}{2} egin{bmatrix} 1 & -1 & 1 \end{bmatrix},$ $u = egin{bmatrix} 0 & 0 & 1 \end{bmatrix}.$

$$\begin{aligned} e_1 &= \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}, \\ e_3 &= \frac{1}{2} \begin{bmatrix} -1 & -1 & 1 \end{bmatrix}, \end{aligned}$$

Beleif propagation for GPT

Definition (Belief propagation for GPT)

Let $(m_{v \to w}^{(0)} \in C_{v,w})_{(v,w) \in E}$ be arbitrarily chosen initial messages. Then, in the belief propagation, the messages are updated according to the following rules

$$m_{v o w}^{(t)} = rac{1}{Z_{v o w}^{(t)}} \left\langle \omega_{v}, \bigotimes_{w' \in \partial v \setminus \{w\}} m_{w' o v}^{(t)}
ight
angle_{\mathcal{V}_{\partial v \setminus w}} \ m_{w o v}^{(t)} = rac{1}{Z_{w o v}^{(t)}} \left\langle \bigotimes_{v' \in \partial w \setminus \{v\}} m_{v' o w}^{(t-1)}, e_{w}
ight
angle_{\mathcal{V}_{\partial w \setminus v}}$$

for t=1,2,... for all $(v,w)\in E$ where the strictly positive constants $Z_{v\to w}^{(t)}$ and $Z_{w\to v}^{(t)}$ are chosen such that $\langle m_{v\to w}^{(t)}, u_{v,w}^* \rangle_{\mathcal{V}_{v,w}} = 1$ and $\langle u_{v,w}, m_{w\to v}^{(t)} \rangle_{\mathcal{V}_{v,w}} = 1$, respectively.

Loop calculus for GPT

Theorem (Loop calculus for GPT)

For any fixed point $(m_{v\to w}, m_{w\to v})_{(v,w)\in E}$ of BP,

$$\left\langle \bigotimes_{v \in V} \omega_v, \bigotimes_{w \in W} e_w \right\rangle_{\mathcal{V}} = Z_{\mathsf{BP}} \left(1 + \sum_{\mathsf{L: generalized loop}} \mathcal{K}(\mathsf{L}) \right)$$

where Z_{BP} denotes the Bethe appoximation for GPT, i.e.,

$$Z_{\mathsf{BP}} := \prod_{v \in V} \left\langle \omega_v, \bigotimes_{w \in \partial_v} m_{w \to v} \right\rangle_{\mathcal{V}_{\partial_v}} \prod_{w \in W} \left\langle \bigotimes_{v \in \partial_w} m_{v \to w}, e_w \right\rangle_{\mathcal{V}_{\partial_w}} \cdot \prod_{(v,w) \in E} \frac{1}{\langle m_{v \to w}, m_{w \to v} \rangle_{\mathcal{V}_{v,w}}}.$$

Summary

- ► A partition function is understood as an inner product.
- Holographic transformation (Holant theorem) can be understood by the inner product representation and adjoint map.
- Probability of locally factorized effect on locally factorized state of GPT is a natural instance of the inner product model.
- Belief propagation, the Bethe approximation and loop calculus for GPT are straightforwardly obtained.

Everything is linear-algebraic!

Future work: Application, e.g., syndrome decoding of stabilizer codes and simulation of MBQC.

Acknowledgment

Keisuke Fujii let me know a lot of stuff on quantum computation. **Tomoyuki Morimae** let me know generalized probabilstic theories.