Non-Binary Polar Codes using Reed-Solomon Codes and Algebraic Geometry Codes

Ryuhei Mori Toshiyuki Tanaka

Graduate School of Informatics, Kyoto University

Information Theory Workshop 2010

- **Exponent** of matrix
- Reed-Solomon matrix Our previous work
- Simulation results This work
- Reed-Solomon matrix and Reed-Muller codes This work
- Hermitian codes This work

Exponent of matrix

- $\blacksquare \quad G: \ \ell \times \ell \text{ matrix on } \mathbb{F}_q.$
- $P_e(G, n)$: error probability of polar codes of length $\ell^n =: N$ (generator matrix is submatrix of $G^{\otimes n}$).

When rate of polar codes is smaller than capacity, for any $\epsilon > 0$

$$N^{E(G)-\epsilon} \leq -\log P_e(G, n) \leq N^{E(G)+\epsilon}$$

where $E(G) \in [0, 1)$ is

$$E(G) := \frac{1}{\ell} \sum_{i=0}^{\ell-1} \log_{\ell} D_i$$

D_i: partial distance

[Korada, Şaşoğlu, and Urbanke 2009] [Arıkan and Telatar 2008]

Partial distance

$$E(G) := \frac{1}{\ell} \sum_{i=0}^{\ell-1} \log_{\ell} D_i$$

D_i: partial distance

 $D_{i} := d(g_{i}, \langle g_{i+1}, ..., g_{\ell-1} \rangle) \quad \text{for } 0 \le i \le \ell - 2$ $D_{\ell-1} := d(g_{\ell-1}, 0)$

- $\blacksquare g_i: ith row of G$
- $\langle g_{i+1}, \ldots, g_{\ell-1} \rangle$: a linear space spanned by $g_{i+1}, \ldots, g_{\ell-1}$
- $d(\cdot, \cdot)$: Hamming distance

 $D_0 D_1 D_2 = 3$, $D_0 D_1 D_2 = 4$

Intuitive explanation

D(G, n): a minimum distance of polar codes constructed from $G^{\otimes n}$

 $P_e(G, n) \ge 2^{-aD(G, n)}$ for some constant a > 0

$$N^{E(G)-\epsilon} \leq -\log P_e(G, n) \leq N^{E(G)+\epsilon}$$

$$N^{E(G)-\epsilon} \leq D(G, n) \leq N^{E(G)+\epsilon}$$

where $E(G) \in [0, 1)$ is

$$E(G) := \frac{1}{\ell} \sum_{i=0}^{\ell-1} \log_{\ell} D_i$$

Matrix transform

under this transform

Without loss of generality, we can assume $D_i = \text{weight}$ of *i*th row of G

Minimum distance of polar codes

- $\blacksquare \quad G: \ \ell \times \ell \text{ matrix on } \mathbb{F}_q$
- $\square \quad D_i: \text{ weight of } i \text{th row of } G$

 $\square \quad D_{i_1,i_2,\ldots,i_n}: \text{ weight of } i \text{ th row of } G^{\otimes n} \text{ where } \ell \text{-ary expansion of } i \text{ is } i_1 \ldots i_n$

$$D_{i_1,i_2,\ldots,i_n}=D_{i_1}D_{i_2}\cdots D_{i_n}$$

From the law of large numbers, one has to choose an index *i* where number of $a \in \{0, ..., \ell - 1\}$ in $i_1 ... i_n$ is about n/ℓ

Hence, one has to choose an index *i* such that

$$D_{i_1, i_2, \dots, i_n} \approx \left(\prod_{i=0}^{\ell-1} D_i\right)^{\frac{n}{\ell}}$$
$$= \exp\left\{n\frac{1}{\ell}\sum_{i=0}^{\ell-1}\log D_i\right\} = N^{E(G)}$$

- Exponent of matrix
- Reed-Solomon matrix Our previous work
- Simulation results This work
- Reed-Solomon matrix and Reed-Muller codes This work
- Hermitian codes This work

Matrix with large exponent

If G doesn't satisfy

$$D_0 \le D_2 \le \dots \le D_{\ell-1} \tag{1}$$

there is a matrix G' which is obtained by permutation of rows of G such that $E(G') \ge E(G)$ and G' satisfies (1) [Korada, Şaşoğlu, and Urbanke 2009]

If (1) is satisfied, $D_i = \text{minimum distance of } \langle g_i, \dots, g_{\ell-1} \rangle$.

Hence, obtaining large E(G) is equivalent to obtaining a sequence of linear codes C_1, \ldots, C_{ℓ} which satisfies

- $\blacksquare \quad \mathcal{C}_i: \text{ a linear code of dimension } i \text{ and length } \ell$
- minimum distance of C_i is large for $i \in \{1, ..., \ell\}$
- $C_1 \subseteq \mathcal{C}_2 \subseteq \cdots \subseteq \mathcal{C}_{\ell}$

Reed-Solomon codes have these properties.

Reed-Solomon matrix

Let α be a primitive element of \mathbb{F}_q . A Reed-Solomon matrix $G_{RS}(q)$ is defined as

	$lpha^{q-2}$	$lpha^{q-3}$	•••	lpha	1	0
X^{q-1}	Γ 1	1	• • •	1	1	0]
X^{q-2}	$lpha^{(q-2)(q-2)}$	$lpha^{(q-3)(q-2)}$	•••	$lpha^{q-2}$	1	0
X^{q-3}	$lpha^{(q-2)(q-3)}$	$lpha^{(q-3)(q-3)}$	•••	$lpha^{q-3}$	1	0
÷		:	• • •	÷		:
X	$lpha^{q-2}$	$lpha^{q-3}$	•••	lpha	1	0
1	1	1	• • •	1	1	1

Submatrix which consists of *i*th row to the last row is a generator matrix of extended Reed-Solomon code.

The size ℓ of RS matrix is q. Since $G_{RS}(2) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, RS matrix can be regarded as a generalization of Arıkan's binary matrix $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.

Since $D_i = i + 1$, $E(G_{RS}(q)) = \frac{\log(q!)}{q \log q}$

Exponent of Reed-Solomon matrix

$$E(G_{\rm RS}(q)) = \frac{\log(q!)}{q\log q}$$

q	2	4	16	64	256
$E(G_{RS}(q))$	0.5	0.573120	0.691408	0.770821	0.822264

 $\lim_{q\to\infty} E(G_{\rm RS}(q)) = 1$

The exponent of binary matrix of size smaller than 32 is smaller than 0.55 [Korada, Şaşoğlu, and Urbanke 2009]

Reed-Solomon matrix is useful for obtaining large exponent !

How about the performance for finite blocklength ?

- Exponent of matrix
 - Reed-Solomon matrix Our previous work
- Simulation results This work
- Reed-Solomon matrix and Reed-Muller codes This work
- Hermitian codes This work

Simulation

Error probability of polar codes
$$\leq \sum_{i \in \mathcal{F}^c} P_e(W_N^{(i)})$$

Binary polar codes using
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 vs 4-ary polar codes using $G_{RS}(4)$

Same blocklength as binary codes 2^7 , 2^9 , 2^{11} , and 2^{13}

AWGN($\sigma = 0.97865$) Capacity is about 0.5

Simulation result

- Exponent of matrix
- Reed-Solomon matrix Our previous work
- Simulation results This work
- Reed-Solomon matrix and Reed-Muller codes This work
- Hermitian codes This work

Polar codes and Reed-Muller codes: binary case

[Arıkan 2009]

<i>X</i> :	1	0	(X_2, X_1) :	(X_2, X_1) : $(1, 1)(1, 0)(0, 1)(0, 0)$				
			X_2X_1	Γ1	0	0	[0	00
<i>X</i>	1	0]	X_2	1	1	0	0	01
1	1	1	X_1	1	0	1	0	10
•	_	-	1	$\lfloor 1$	1	1	1	11

Polar rule: $\{i \in \{0, ..., 2^n - 1\} \mid P_e(W^{(i_1) \cdots (i_n)}) < \epsilon\}$ Reed-Muller rule: $\{i \in \{0, ..., 2^n - 1\} \mid i_1 + \cdots + i_n > k\}$

Binary polar codes using $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and binary Reed-Muller codes are similar.

Reed-Muller rule maximizes the minimum distance.

Polar codes using RS matrix and Reed-Muller codes: *q***-ary case**

Polar rule: $\{i \in \{0, ..., q^n - 1\} \mid P_e(W^{(i_1) \cdots (i_n)}) < \epsilon\}$ Reed-Muller rule: $\{i \in \{0, ..., q^n - 1\} \mid i_1 + \cdots + i_n > k\}$

Q-ary polar codes using $G_{RS}(q)$ and q-ary Reed-Muller codes are also similar.

Hyperbolic rule: $\{i \in \{0, ..., q^n - 1\} \mid (i_1 + 1) \cdots (i_n + 1) > k\}$ Hyperbolic rule maximizes the minimum distance (Massey-Costello-Justesen codes, hyperbolic cascaded RS codes).

- Exponent of matrix
- Reed-Solomon matrix Our previous work
- Simulation results This work
- Reed-Solomon matrix and Reed-Muller codes This work
- Hermitian codes This work

Hermitian codes

 \mathcal{C}_i : a linear code of dimension *i* and length ℓ

- minimum distance of C_i is large for $i \in \{1, ..., \ell\}$
- $C_1 \subseteq \mathcal{C}_2 \subseteq \cdots \subseteq \mathcal{C}_{\ell}$

Some class of algebraic geometry codes have the nested structure.

$G_H(q)$: matrix using q-ary Hermitian codes

q (even power of a prime)	4	16	64	256
$E(G_{RS}(q))$	0.573120	0.691408	0.770821	0.822264
$E(G_{H}(q))$	0.562161	0.707337	0.802760	0.859299
$q^{3/2}$ = size of $G_{\rm H}(q)$	8	64	512	4096

In order to obtain large exponent on fixed q, algebraic geometry codes are useful.

Conclusion

Conclusion

- Reed-Solomon matrix has large exponent (previous work)
- 4-ary polar codes using Reed-Solomon matrix has better performance than binary polar codes using $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ for finite blocklength
- Polar codes using Reed-Solomon matrix, Reed-Muller codes, and Massey-Costello-Justesen/hyperbolic cascaded RS codes are similar (generator matrices are constructed from G_{RS}(q)^{⊗n})
- Matrices using Hermitian codes have larger exponent than RS matrix (unless q = 4). But size of the matrices are large.

Future works

Other heuristic decoding for q-ary polar codes using Reed-Solomon matrix e.g., symbolwise/bitwise belief propagation.