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1. Factor graph, Bethe approximation and belief propagation

2. Relation between annealed free energy and belief propagation

3. Growth rate of spatially coupled LDPC codes and threshold
saturation phenomenon

Here, growth rate is

G (ω) = lim
N→∞

1

N
logE[Z (ω)]

Z (ω): the number of codewords of relative weight ω ∈ [0, 1].



Factor graph, Bethe approximation
and belief propagation
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Factor graph
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Factor graph: bipartite graph which defines probability measure

p(xxx) =
1

Z

∏

a

fa(xxx∂a)

Z :=
∑

xxx∈X n

∏

a

fa(xxx∂a), (partition function)

fa(xxx∂a) : X
ra → R≥0



Gibbs free energy
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p(xxx) =
1

Z

∏

a

fa(xxx∂a)

Approximation by simple distribution q of p which is defined by factor
graph

D(q‖p) =
∑

xxx

q(xxx) log
q(xxx)

p(xxx)

= logZ−
∑

xxx

q(xxx) log

(

∏

a

fa(xxx∂a)

)

+
∑

xxx

q(xxx) log q(xxx)

=: logZ + U(q)−H(q)

=: logZ + FGibbs(q)

U(p): internal energy
H(p): entropy
FGibbs(p): Gibbs free energy



Mean field approximation and Bethe approximation
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Mean field approximation

q(xxx) =
∏

i

bi(xi)

Degree of freedom is reduced from qn to nq

Bethe approximation

q(xxx) =

∏

a ba(xxx∂a)
∏

i bi(xi)
di−1

di : degree of variable node i

When factor graph is tree, Bethe approximation can be exact



Bethe free energy
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U(q) = −
∑

xxx

q(xxx) log

(

∏

a

fa(xxx∂a)

)

≈−
∑

a

∑

xxx∂a

ba(xxx∂a) log fa(xxx∂a) =: UBethe({ba})

b(xxx)≈

∏

a ba(xxx∂a)
∏

i bi(xxx)
di−1

H(b) = −
∑

xxx

b(x) log b(x)

≈−
∑

xxx

b(x) log

∏

a ba(xxx∂a)
∏

i bi(xxx)
di−1

= −
∑

a

∑

xxx∂a

ba(xxx∂a) log ba(xxx∂a)+
∑

i

(di−1)
∑

i

bi(xi) log bi(xi)

=: HBethe({bi}, {ba})



Minimization of Bethe free energy

8 / 34

FBethe({bi}, {ba}) := UBethe({ba})−HBethe({bi}, {ba})

minimize : FBethe({bi}, {ba})

subject to : bi(xi)≥0, ∀i

ba(xxx∂a)≥0, ∀a
∑

i

bi(xi) = 1

∑

a

ba(xxx∂a) = 1

∑

xxx∂a\xi

ba(xxx∂a) = bi(xi), ∀a,∀i ∈ ∂a



Stationary point of Lagrangian of Bethe free energy
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[Yedidia, Freeman, and Weiss 2005]

L := FBethe({bi}, {ba})+
∑

a

γa

[

∑

xxx∂a

ba(xxx∂a)−1

]

+
∑

i

γ i

[

∑

x

bi (x)−1

]

+
∑

a

∑

i∈∂a

∑

xi

λai (xi )



bi (xi )−
∑

xxx∂a\xi

ba(xxx∂a)





Stationary points of Lagrangian is fixed points of BP

ba(xxx∂a) ∝ fa(xxx∂a)
∏

i∈∂a

mi→a(xi)

bi (xi ) ∝
∏

i∈∂a

ma→i (xi )

where mi→a(xi) ∝
∏

c∈∂i\a

mc→i (xi )

ma→i (xi) ∝
∑

xxx∂a\xi

fa(xxx∂a)
∏

j∈∂a\i

mj→a(xj)



Relation between annealed free
energy and belief propagation
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Random regular factor graph ensemble
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Factor graph: bipartite graph which defines probability measure

µ(xxx) =
1

Z

∏

a

fa(xxx∂a)

Z :=
∑

xxx∈X n

∏

a

fa(xxx∂a), (partition function)

Random (l , r)-regular factor graph ensemble:
l : degree of variable nodes, r : degree of factor nodes
Random ensemble of factor graphs



Annealed free energy
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Factor graph: bipartite graph which defines probability measure

µ(xxx) =
1

Z

∏

a

fa(xxx∂a)

Z :=
∑

xxx∈X n

∏

a

fa(xxx∂a), (partition function)

Random (l , r)-regular factor graph ensemble:
l : degree of variable nodes, r : degree of factor nodes
Random ensemble of factor graphs

(Quenched) free energy:

lim
N→∞

1

N
E[logZ ]

Annealed free energy:

lim
N→∞

1

N
logE[Z ]



Contribution to partition function of particular types
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{vx}x∈X : the number of variable nodes of value x ∈ X is vx
{uxxx}xxx∈X r : the number of factor nodes of value xxx ∈ X r is uxxx

Z =
∑

xxx∈XN

∏

a

f (xxx∂a)

=
∑

{v},{u}

N({v}, {u})
∏

xxx∈X r

f (xxx)uxxx .

E[N({v}, {u})] =

(

N

{vx}x∈X

)(

l
r
N

{uxxx}xxx∈X r

)
∏

x∈X (vx l)!

(Nl)!
.

lim
N→∞

1

N
logE[Z ({ν}, {µ})]

=
l

r
H({µ})−(l−1)H({ν})+

l

r

∑

xxx∈X r

µ(xxx) log f (xxx).



Annealed free energy of fixed type and Bethe free energy
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FBethe({bi}, {ba}) = −
∑

a

∑

xxx∂a

ba(xxx∂a) log fa(xxx∂a)

+
∑

a

∑

xxx∂a

ba(xxx∂a) log ba(xxx∂a)−
∑

i

(di−1)
∑

i

bi(xi) log bi(xi)

lim
N→∞

1

N
logE[Z ({ν}, {µ})]

=
l

r

∑

xxx∈X r

µ(xxx) log f (xxx)+
l

r
H({µ})−(l−1)H({ν}).



Maximization of the exponents of contributions

15 / 34

maximize :
l

r
H({µ})−(l−1)H({ν})+

l

r

∑

xxx∈X r

µ(xxx) log f (xxx)

subject to : ν(x)≥0, ∀x ∈ X

µ(xxx)≥0, ∀xxx ∈ X r

∑

x∈X

ν(x) = 1

∑

xxx∈X r

µ(xxx) = 1

1

r

r
∑

k=1

∑

xxx\xk
xk=z

µ(xxx) = ν(z), ∀z ∈ X



The stationary condition
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The stationary condition is

ν(x) ∝ mf→v (x)
l

µ(xxx) ∝ f (xxx)
r
∏

i=1

mv→f (xi)

where

mv→f (x) ∝ mf→v (x)
l−1

mf→v (x) ∝
r
∑

k=1

∑

xxx\xk
xk=x

f (xxx)
∏

j 6=k

mv→f (xj).

If f (xxx) is invariant under any permutation of xxx ∈ X r

mf→v (x) ∝
∑

xxx\x1
x1=x

f (xxx)
∏

j 6=1

mv→f (xj).



Annealed free energy
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Theorem 1.

lim
N→∞

1

N
logE[Z ] = max

(mf→v ,mv→f )∈S

{

l

r
logZf + logZv−l logZfv

}

.

where S denotes the set of saddle points, and where

Zv :=
∑

x

mf→v (x)
l

Zf :=
∑

xxx

f (xxx)

r
∏

i=1

mv→f (xi)

Zfv :=
∑

x

mf→v (x)mv→f (x).



Number of solutions
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If
r
∑

k=1

∑

xxx\xk
xk=x

f (xxx)

is constant among all x ∈ X , the uniform message mf→v (x)、 mv→f (x)
is a saddle point.
The contribution of the uniform message is

lim
N→∞

1

N
logE[Z (ν,µ)] = log q +

l

r
log

(

Nf

qr

)

(design rate)

where q := |X |、 Nf :=
∑

xxx f (xxx).
For CSP i.e., f (xxx) ∈ {0, 1}, the expected number of solutions is about

qN

(

Nf

qr

)
l
r
N

.

This intuitively means all constraints are independent.



Contribution to partition function of fixed variable type
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Z ({ν}) :=
∑

{µ}

Z ({ν}, {µ})

lim
N→∞

1

N
logE[Z ({ν})]

= sup
{µ}

{

l

r
H({µ})−(l−1)H({ν})+

l

r

∑

xxx∈X r

µ(xxx) log f (xxx)

}

where {µ} satisfies

µ(xxx)≥0, ∀xxx ∈ X r

∑

xxx∈X r

µ(xxx) = 1

1

r

r
∑

k=1

∑

xxx\xk
xk=z

µ(xxx) = ν(z), ∀z ∈ X

Convex optimization problem with linear constraints.



The stationary condition
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The stationary condition is

µ(xxx) ∝ f (xxx)

r
∏

i=1

mv→f (xi)

where

ν(x) ∝ h(x)mf→v (x)
l

mv→f (x) ∝ h(x)mf→v (x)
l−1

mf→v (x) ∝
r
∑

k=1

∑

xxx\xk
xk=x

f (xxx)
∏

j 6=k

mv→f (xj).

If f (xxx) is invariant under any permutation of xxx ∈ X r

mf→v (x) ∝
∑

xxx\x1
x1=x

f (xxx)
∏

j 6=1

mv→f (xj).



Growth rate of contribution to partition function of fixed variable type
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Theorem 2.

lim
N→∞

1

N
logE[Z ({ν})]

= max
(mf→v ,mv→f )∈S

{

l

r
logZf + logZv−l logZfv−

∑

x

ν(x) log h(x)

}

where S denotes the set of saddle points, and where

Zv :=
∑

x

h(x)mf→v (x)
l

Zf :=
∑

xxx

f (xxx)
r
∏

i=1

mv→f (xi)

Zfv :=
∑

x

mf→v (x)mv→f (x).



Growth rate of regular LDPC codes
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G (ω) =
l

r
log

1+ z r

2
+ log

[

eh
(

1+ y

2

)l

+ e−h

(

1−y

2

)l
]

−l log
1+ yz

2
−ω

′h

where ω
′ := 1−2ω and

ω
′ = tanh(h+ l tanh−1(y))

y = z r−1

z = tanh(h+ (l−1) tanh−1(y)).

This result can be easily understood from correspondings
ω

′ = ν(0)−ν(1)

y = mf→v (0)−mf→v (1)

z = mv→f (0)−mv→f (1)

h(x) = e(−1)xh



Growth rate of regular LDPC codes
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Growth rate of binary CSP
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Growth rate of (3,2)-regular-3-coloring
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Replica theory

26 / 34

This story continues into the replica theory
(see the paper in arXiv).

But, we don’t deal with it here.

E[logZ ] =
∂ logE[Z n]

∂n

∣

∣

∣

∣

n=0

lim
N→∞

1

N
E[logZ ] = lim

N→∞

1

N
lim
n→0

logE[Z n]

n
?
= lim

n→0

1

n
lim

N→∞

1

N
logE[Z n]

The replica method is methematically not rigorous e.g., exchange of
limits, analytic continuation of n.



Growth rate of spatially coupled
LDPC codes and threshold saturation

phenomenon
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Protograph ensemble
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The similar results also holds for protograph ensemble [Vontobel 2010]

In this morning, Kenta has explained

■ Definition of protograph ensemble

■ Definition of spatially coupled LDPC codes

■ Threshold saturation phenomenon of EXIT curve



Growth rate of spatially coupled LDPC codes
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G (ω) =
1

2L+ 1

[

l

r

L+l−1
∑

j=−L

log

(

log
1+

∏l−1
k=0 zj ,k

r
l

2

)

+
L
∑

i=−L

log

[

eh
l−1
∏

k=0

(

1 + yi ,k

2

)

+ e−h

l−1
∏

k=0

(

1−yi ,k

2

)

]

−

L
∑

i=−L

l−1
∑

k=0

log

(

1+ yi ,kzi+k,k

2

)

]

−ω
′h.

ω
′ =

1

2L+ 1

L
∑

i=−L

tanh

(

h+

l−1
∑

k=0

tanh−1 (yi ,k)

)

zj ,k = tanh



h+
l−1
∑

k ′=0,k ′ 6=k

tanh−1
(

yj−k,k ′

)





yi ,k = zi+k,k
r
l
−1

l−1
∏

k ′=0,k ′ 6=k

zi+k,k ′

r
l



ω
′ versus h
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ω versus h: Derivative of growth rate
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Growth rate
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Conclusion
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■ Contribution to annealed free energy of particular type has similar
form of Bethe free energy.

■ The stationary condition of maximization problem for annealed free
energy is similar to equation of belief propagation.

■ There exists threshold saturation phenomenon in the calculation of
growth rate of spatially coupled LDPC codes.

■ We now can calculate annealed free energy of any coupled factor
graphs. Effect of boundary condition is not obvious. BP iterations
does not necessarily converge (even for uncoupled cases).
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